Lecture Notes Gate Turn-off Thyristors (GTOS)

OUTLINE

- GTO construction and I-V characteristics.
- Physical operation of GTOs.
- Switching behavior of GTOS

Copyright © by John Wiley & Sons 2003

GTOs - 1

GTO (Gate Turn-off Thyristor) Construction

gate metallization cathode • Unique features of the GTO. metallization copper cathode contact plate • Highly interdigitated gatecathode structure (faster switching) Etched cathode islands ٠ (simplify electrical contacts) • Anode shorts (speed up turn-off) Р GTO has no reverse blocking • N capability because of anode P⁺ N^+ P^{+} N^+ shorts **p**+ Otherwise i-v characteristic the anode J3 J_1 J anode same as for standard SCR shorts anode9 GTO circuit symbol gate cathode

Copyright © by John Wiley & Sons 2003

GTO Turn-off Gain

- Turn off GTO by pulling one or both of the BJTs out of saturation and into active region.
- Force Q₂ active by using negative base current I_G' to make I_{B2} $< \frac{I_{C2}}{\beta_2}$
- $I_{B2} = \alpha_1 I_A I'_G$; $I_{C2} = (1 \alpha_1) I_A$
- $\alpha_1 I_A I'_G < \frac{(1 \alpha_1) I_A}{\beta_2} = \frac{(1 \alpha_1) (1 \alpha_2) I_A}{\alpha_2}$
- $I'_G < \frac{I_A}{\beta_{off}}; \ \beta_{off} = \frac{\alpha_2}{(1 \alpha_1 \alpha_2)} = \text{turn-off gain}$

Copyright © by John Wiley & Sons 2003

- Large turn-off gain requires $\alpha_2 \approx 1, \alpha_1 \ll 1$
- Make α_1 small by
 - 1. Wide n₁ region (base of Q₁) also needed for large blocking voltage
 - 2. Short lifetime in n_1 region to remove excess carriers rapidly so Q_1 can turn off
- Short lifetime causes higher on-state losses
- Anode shorts helps resolve lifetime delimma
 Reduce lifetime only moderately to keep on-state losses reasonable
 - 2. N⁺ anode regions provide a sink for excess holes reduces turn-off time
- Make α₂ ≈ unity by making p₂ layer relatively thin and doping in n₂ region heavily (same basic steps used in making beta large in BJTs).
- Use highly interdigitated gate-cathode geometry to minimize cathode current crowding and di/dt limitations.

GTOs - 3

Maximum Controllable Anode Current

- Large negative gate current creates lateral voltage drops which must be kept smaller than breakdown voltage of J₃.
- If J₃ breaks down, it will happen at gate-cathode periphery and all gate current will flow there and not sweep out any excess carriers as required to turn-off GTO.
- Thus keep gate current less than I_{G,max} and so anode current restricted

by
$$I_A < \frac{I_{G,max}}{\beta_{off}}$$

GTO Step-down Converter

- GTO used in medium-to-high power applications where electrical stresses are large and where other solid state devices used with GTOs are slow e.g. freewheeling diode D _F.
- GTO almost always used with turn-on and turn-off snubbers.
 - 1. Turn-on snubber to limit overcurrent from D _F reverse recovery.
 - 2. Turn-off snubber to limit rate-of-rise of voltage to avoid retriggering the GTO into the on-state.
- Hence should describe transient behavior of GTO in circuit with snubbers.

Copyright © by John Wiley & Sons 2003

GTOs - 5

GTO Turn-on Waveforms

- GTO turn on essentially the same as for a standard thyristor
- Large I_{GM} and large rate-of-rise insure all cathode islands turn on together and have good current sharing.
- Backporch current I _{GT} needed to insure all cathode islands stay in conduction during entire on-time interval.
- Anode current overshoot caused by freewheeling diode reverse recovery current.
- Anode-cathode voltage drops precipitiously because of turn-on snubber

Copyright © by John Wiley & Sons 2003

GTO Turn-off Waveforms

Copyright © by John Wiley & Sons 2003

<u>t_s interval</u>

Time required to remove sufficient stored charge to bring BJTs into active region and break latch condition

- t_{fi}_interval
 - 1. Anode current falls rapidly as load current commutates to turn-off snubber capacitor
- 2. Rapid rise in anode-cathode voltage due to stray inductance in turn-off snubber circuit

• tw2_interval

- 1. Junction J_3 goes into avalanche breakdown because of inductance in trigger circuit. Permits negative gate current to continuing flowing and sweeping out charge from p_2 layer.
- 2. Reduction in gate current with time means rate of anode current commutation to snubber capacitor slows. Start of anode current tail.

t_{tail} interval

- 1. Junction J_3 blocking, so anode current = negative gate current. Long tailing time required to remove remaining stored charge.
- 2. Anode-cathode voltage growth governed by turn-off snubber.
- 3. Most power dissipation occurs during tailing time.

GTOs - 7

Lecture Notes

Insulated Gate Bipolar Transistors (IGBTs)

Outline

- Construction and I-V characteristics
- Physical operation
- Switching characteristics
- Limitations and safe operating area
- PSPICE simulation models

Copyright © by John Wiley & Sons 2003

IGBTs - 1

Multi-cell Structure of IGBT

• IGBT = insulated gate bipolar transistor.

Copyright © by John Wiley & Sons 2003

Cross-section of IGBT Cell

- Cell structure similar to power MOSFET (VDMOS) cell.
- P-region at collector end unique feature of IGBT compared to MOSFET.
- Punch-through (PT) IGBT N⁺ buffer layer present.
- Non-punch-through (NPT) IGBT N⁺ buffer layer absent.

Copyright © by John Wiley & Sons 2003

IGBTs - 3

IGBT I-V Characteristics and Circuit Symbols

Blocking (Off) State Operation of IGBT

- Blocking state operation $V_{GE} < V_{GE(th)}$
- Junction J₂ is blocking junction n⁺ drift region holds depletion layer of blocking junction.
- Without N⁺ buffer layer, IGBT has large reverse blocking capability - so-called symmetric IGBT
- With N⁺ buffer layer, junction J₁ has small breakdownvoltage and thus IGBT has little reverse blocking capability anti-symmetric IGBT
- Buffer layer speeds up device turn-off

IGBT On-state Operation

Copyright © by John Wiley & Sons 2003

• MOSFET section designed to carry most of the IGBT collector current

- On-state V_{CE(on)} =
 V_{J1} + V_{drift} + I_CR_{channel}
- Hole injection into drift region from J₁ minimizes Vdrift.

IGBTs - 7

Approximate Equivalent Circuits for IGBTs

- Approximate equivalent circuit for IGBT valid for normal operating conditions.
- Conduction path resulting collector in thyristor turn-on (IGBT latchup) if current in this path is too large gate Principal (desired) path of collector current
 - IGBT equivalent circuit showing transistors comprising the parasitic thyristor.

 $V_{CE(on)} = V_{J1} + V_{drift} + I_C R_{channel}$

Static Latchup of IGBTs

- Lateral voltage drops, if too large, will forward bias junction J3.
- Parasitic npn BJT will be turned on, thus completing turn-on of parasitic thyristor.
- Large power dissipation in latchup will destroy IGBT unless terminated quickly. External circuit must terminate latchup no gate control in latchup.

Copyright © by John Wiley & Sons 2003

IGBTs - 9

Dynamic Latchup Mechanism in IGBTs

- MOSFET section turns off rapidly and depletion layer of junction J2 expands rapidly into N⁻ layer, the base region of the pnp BJT.
- Expansion of depletion layer reduces base width of pnp BJT and its a increases.
- More injected holes survive traversal of drift region and become "collected" at junction J2.
- Increased pnp BJT collector current increases lateral voltage drop in p-base of npn BJT and latchup soon occurs.
- Manufacturers usually specify maximum allowable drain current on basis of dynamic latchup.

Internal Capacitances Vs Spec Sheet Capacitances

 $C_{oes} = C_{gc} + C_{ce}$

Copyright © by John Wiley & Sons 2003

IGBTs - 11

IGBT Turn-on Waveforms

- Turn-on waveforms for IGBT embedded in a stepdown converter.
- Very similar to turn-on waveforms of MOSFETs.
- Contributions to t_{vf2}.
 - Increase in C_{ge} of MOSFET section at low collector-emitter voltages.
 - Slower turn-on of pnp BJT section.

IGBTs - 12

IGBT Turn-off Waveforms

Copyright © by John Wiley & Sons 2003

- Turn-off waveforms for IGBT embedded in a stepdown converter.
- Current "tailing" (t_{fi2}) due to stored charge trapped in drift region (base of pnp BJT) by rapid turn-off of MOSFET section.
- Shorten tailing interval by either reducing carrier lifetime or by putting N⁺ buffer layer adjacent to injecting P⁺ layer at drain.
- Buffer layer acts as a sink for excess holes otherwise trapped in drift region becasue lifetime in buffer layer can be made small without effecting on-state losses buffer layer thin compared to drift region.

IGBTs - 13

IGBT Safe Operating Area

- Maximum collector-emitter voltages set by breakdown voltage of pnp transistor -2500 v devices available.
- Maximum collector current set by latchup considerations - 100 A devices can conduct 1000 A for 10 μ sec and still turn-off via gate control.
- Maximum junction temp. = 150 C.
- Manufacturer specifies a maximum rate of increase of re-applied collector-emitter voltage in order to avoid latchup.

Development of PSpice IGBT Model

- Nonlinear capacitors Cdsj and Ccer due to N-P junction depletion layer.
- Nonlinear capacitor Cebj + Cebd due to P⁺N⁺ junction
- MOSFET and PNP BJT are intrinsic (no parasitics) devices
- Nonlinear resistor Rb due to conductivity modulation of N⁻ drain drift region of MOSFET portion.
- Nonlinear capacitor Cgdj due to depletion region of drain-body junction (N-P junction).
- · Circuit model assumes that latchup does not occur and parasitic thyristor does not turn.

Copyright © by John Wiley & Sons 2003

• Reference - "An Experimentally Verified IGBT Model Implemented in the SABER Circuit Simulator", Allen R. Hefner, Jr. and Daniel M. Diebolt, IEEE Trans. on Power Electronics, Vol. 9, No. 5, pp. 532-542, (Sept., 1994)

IGBTs - 15

Parameter Estimation for PSpice IGBT Model

- Built-in IGBT model requires nine parameter values.
 - Parameters described in Help files of Parts utility program.
- Parts utility program guides users through parameter estimation process.
 - IGBT specification sheets provided by manufacturer provide sufficient information for general purpose simulations.
 - Detailed accurate simulations, for example device dissipation studies, may require the user to carefully characterize the selected IGBTs.

• Built-in model does not model ultrafast IGBTs with buffer layers (punch-through IGBTs) or reverse free-wheeling diodes

PSpice IGBT - Simulation Vs Experiment

